Innovative, better, safer and eco-friendly

Scaling up from a laboratory reaction to an industrial process is the main challenge for chemical engineers. This is a complicated optimization problem at many levels: environmental impact, energy consumption and cost must be minimized and the quality and process safety maximized.
Hydrogen Production using a MoSx Catalyst on Cu₂O Photocathode

Carlos Morales
“We are looking for different ways to transform sunlight into solar fuels. More specifically, we are interested in splitting water to produce hydrogen and oxygen using sunlight. The energy stored in the form of new hydrogen bonds created during the day can, for example, be used to generate electricity during the night. Essentially, the splitting of water requires coupling in the same device of light absorbing materials with efficient electrocatalysts. The best hydrogen evolving electrocatalysts are precious metals like Platinum which, however, are expensive and scarce. This work brought together a light absorbing cuprous oxide developed in the Prof. Graetzel’s group with a very efficient molybdenum sulfide electrocatalyst developed in Prof. Hu’s group. The combination for the first time of these two materials in the same device allowed us to demonstrate efficient hydrogen production using sunlight. Moreover, the device was prepared through scalable manufacturing techniques and sets a new benchmark of efficiency for photoelectrodes using only abundant elements for both the light absorbers and hydrogen evolution electrocatalyst.”

Characterization of disperse Dyes and Application Properties in Inks for Ink-jet Printing

Marion Debellemanière
The research is aimed on the investigations of the differentiating properties between specific lots of disperse red ink. This dye is used for transfer printing on polyester fabrics in the imaging industry. Some lots presented problematic properties that caused specific problems like the blocking of the nozzles in the piezoelectric drop-on-demand printing heads and the inability to reduce the particle size to a model size smaller than 150 nm in the milling step. Theses differentiating properties between the lots that presented problems and those that presented satisfactory performances have been researched and attempted to be identified. Some solutions to improve the use of these inks have been investigated. The presence of unexpected magnetisable material identified as iron has been expected to be the potential problematic factor. To achieve the goal of differentiating the lots, the first approach proposed to quantify this iron in the lots. Then, the physico-chemical properties of the lots have been investigated with a critical micelle concentration study to see if the problems encountered during the milling process were due to wettability differences. The set-up of a blind test aimed to estimate the quality of a lot has completed these researches. Finally, further characterization experiments have been performed by Nuclear Magnetic Resonance and X-Rays crystallography.

Delphine Blondel:
“The Master gives you the chance to choose between different options, and I went for biotechnology and food industry. Currently, I am carrying out an industrial internship as a health and security engineer. I establish organizational strategies to store hazard liquids. The risk management and safety of chemical processes classes at EPFL prepared me to work in that field.”

Andrés López:
“When you are at EPFL, you are in contact with the best research that is being done right now. You are here with scientists that are building the future of science.”

Watch the video:
Master of Science in
CHEMICAL ENGINEERING AND BIOTECHNOLOGY

2-year program - 120 ECTS

Students must choose 2 or 3 modules in Specialization modules and 10 ECTS within the free module.

Students can opt for a 30 ECTS minor instead of the industrial internship, preferably in:
- Management, Technology and Entrepreneurship
- Science, Technology and Area Studies

School of Basic Sciences
master.epfl.ch/chemicalengineering
Contact: scgc@epfl.ch

© 07.2017, Ecole polytechnique fédérale de Lausanne - Concept and design: monokini.ch with didier-obsession.ch